Image may be NSFW. Clik here to view. ![]() |
Fig. 1 N. Hemisphere Layers Zero - Layer Nine |
I. A College Experiment
Today, along with the graphs of N. Hemisphere Layer Zero through Layer Eight (in Month format), let's peruse a college level class guidance sheet concerning the hypothesis of thermal expansion being the major cause of sea level rise in the 19th and 20th centuries (Oregon State, PDF).
This material is taught to college / university level students who put on their lab coats and do the following experiment.
First, a 125-250 ml. conical flask is filled with water.
The flask is then equipped with a two hole cork, which is placed into the opening at the top, and then two thin glass tubes are forced into the holes in the cork.
Image may be NSFW. Clik here to view. ![]() |
Fig. 2 Layer Eight |
II. A Better Experiment
For this experiment scenario to be an accurate representation, it would have to be a very deep flask, say 20-30 ft., filled with ocean water of different temperatures and salinity levels (and a certain percentage of its lower area should be coated or wrapped with black paper, tape, or plastic to represent the dark depths of the ocean.
Image may be NSFW. Clik here to view. ![]() |
Fig. 3 Layer Seven |
The upper layers should typically have graduated temperatures, generally warmer as the surface is approached (see e.g. Fig. 2 - Fig. 4).
The heat applied via a lamp (simulating sunlight striking the surface) should impact the surface area only.
Image may be NSFW. Clik here to view. ![]() |
Fig. 4 Layer Six |
Absent this more realistic lab setup, this experiment at Oregon State, typical of college labs, shows how a myth is advanced.
Anyway, when the warmth in the light impacting the water at the surface of the flask, simulating sunlight entering the ocean at the surface, increases, the second law of thermodynamics will apply, and the heat in the warmer water will flow to the cooler water as equilibrium is sought to be attained.
This applies in a manner that causes heat flow horizontally and/or vertically, depending on the current conditions in that area.
Even with the better experiment, the class will wait all semester, or longer, before any meaningful net thermal expansion takes place.
Image may be NSFW. Clik here to view. ![]() |
Fig. 5 Layer Five |
III. The Best Experiment
The best "experiment" is to OBSERVE the actual measurements taken by research scientists over the years then placed into the World Ocean Database (WOD).
There are billions of such measurements (I myself have personally downloaded ~0.97 billion such measurements to use for generating graphs (Databases Galore - 18).
Such observations shown in graphs in this and other Dredd Blog series reveal that even though most of the heat (~95%) being trapped by greenhouse gases is making its way into the oceans, it does not result in a dynamic that is "the major or a major cause of sea level rise due to thermal expansion."
Image may be NSFW. Clik here to view. ![]() |
Fig. 6 Layer Four |
What takes place is that the distance between the lines on the graph that represent temperature levels will increase and decrease as the laws of thermodynamics and fluid dynamics apply and the warmth or heat flows toward and into colder water over, under, or beside it.
This flow, in general, will be in a downward direction until a "contextual equilibrium" is reached.
Image may be NSFW. Clik here to view. ![]() |
Fig. 7 Layer Three |
I wrote "contextual equilibrium" because various factors such as salinity, currents, and several other factors can resist or halt the flow for a time.
Nevertheless, when the ocean wakes up in the morning to start all over again, the laws of fluids and thermodymics will still be around.
Image may be NSFW. Clik here to view. ![]() |
Fig. 8 Layer Two |
IV. A Discussion of the Class Discussion
The teacher is guided by the Oregon State guidance sheet.
The text reads "If global temperature increases, many scientists have indicated that an increase in sea level is one of the most likely secondary effects." (p. 1)
It may be true that "many scientists have indicated," but many of that "many" do so parroting previous statements rather than "going to the lab" themselves.
The "most likely secondary effects" are dying coral, extinction of species, and increasing temperature measurements further down in the ocean depths.
Image may be NSFW. Clik here to view. ![]() |
Fig. 9 Layer One |
But as soon as the context changes in that area, such as salinity, then the transfer of warm to cold kicks in once again and the temperature at the warmer level drops as the temperature at the cooler level increases until a contextual equilibrium is reached (On Thermal Expansion & Thermal Contraction, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14).
Image may be NSFW. Clik here to view. ![]() |
Fig. 10 Layer Zero |
Nevertheless, when the status quo temperature at any contextual area is harmful to species in that water, damage is going to be done regardless of the advent or not of sea level rise or fall.
V. The Big Picture
The teacher's guide goes on to indicate "Second, rising temperatures will cause the ice and snowfields to melt, thereby increasing the amount of water in the oceans."
What would the teacher say if a student were to ask "how much sea level can thermal expansion cause compared to ice melting?"
Would the teacher refer to NOAA et al. calculations that the amount of sea level rise caused by ice melt is about 80.32 meters or 263.51 feet (USGS) ?
Or would she refer to the Dredd Blog calculation based on ghost water (The Ghost-Water Constant, 2, 3, 4, 5, 6, 7) ?
Or would he say it depends on where you would measure the change due to gravitational and rotational dynamics (The Gravity of Sea Level Change, 2, 3, 4) ?
VI. Conclusion
We have to trust (The Pillars of Knowledge: Faith and Trust?) but we must also confirm (What Is Pseudo Science?).
The previous post in this series is here.